

M o s t o f t h e e l e c t r i c a l p o w e r g e n e r at e d i n
Los Alamos County goes to the national laboratory, with the largest
chunk, about 25 percent of the county’s power, going to the Lab’s
proton accelerator. But its next-largest power-hungry behemoth after
that, consuming about 20 percent of the county’s total production—
roughly equal to the power consumed by all of Los Alamos’s businesses
and residences combined—is a collection of computers. These are
supercomputers that, by virtue of their sophistication, are pushing up
against serious power and performance limitations.

The Lab’s high-performance computing (HPC) facilities primarily
comprise more than ten supercomputers, one quantum-annealing
computer, and several other HPC systems frequently used as test beds
for experimentation. Lab scientists use these machines to perform
computationally intensive simulations of many complex phenomena,
from submicroscopic material changes inside the high-radiation
environment of a nuclear weapon to the sensitive atmospheric
dynamics that govern the global climate; from the evolution of
cancer to the evolution of the universe. For a given top-of-the-line
supercomputer, the performance of such simulations is largely
limited by two things, one of which is the allotted electrical power.

The other limitation comes from an accumulation of tiny
hardware glitches, called faults, often caused by natural radiation.
These faults can randomly alter computer information, causing a zero
to become a one, for example. Some faults are harmless, changing
values that an application isn’t using anyway. Others produce errors,
manifesting as incorrect outputs or procedures. And occasionally one
causes a crash, changing something so foundational that the operating
system can no longer function without a full restart.

In the next ten years, computing advances will face
severe limitations. We can either try to overcome them or

drive headlong into them.

1663 October 2017 27271663 October 2017

PACKING IN MORE TRANSISTORS WILL
INCREASE A CHIP’S VULNERABILITY

ALONG WITH ITS PERFORMANCE

In personal computers, even those rare faults that get
amplified to become crashes generally constitute little more than
a nuisance nowadays. In supercomputers, however, a multitude
of faults can develop in succession due to the sheer number
of chips that can be affected. These constitute a serious drain
on performance. Los Alamos is on the forefront of advanced
supercomputing, pushing toward the exascale (1018 “flops,”
or floating-point operations per second, for those in the know).
That’s more than a hundred times faster than the world’s current
leading supercomputer and many millions of times faster than
a new top-of-the-line laptop—and vastly more vulnerable
to both faults and power insufficiency than either one.

Los Alamos scientists are pursuing two novel and
somewhat contradictory paths to get around these limitations.
One of these, as might be expected, involves tighter control
over every bit of information:
aggressively ferreting out faults
and correcting them as they occur.
The other, perhaps paradoxically,
involves looser control of information:
tolerating some randomness or reduced
precision to save power and capacity for higher-precision
operations elsewhere. Both strategies are likely to contribute
to overall higher performance within power constraints
and may ultimately find their way to consumer-market
devices like phones and laptops, improving battery life and
maybe, just maybe, eliminating those interminable hourglass
and pinwheel icons from all of our lives.

No more Moore
Moore’s Law famously asserts that the number of

transistors per unit area that can be manufactured on a
computer chip doubles every year or two—every year when
the law was first postulated in the 1960s and every 18–24
months now. Historically, this has meant a steady increase in
processing power, memory, and other measures of computer
performance and has contributed strongly to economic growth
around the world.

There have been many incorrect predictions of the end
of Moore’s Law, when the computing industry would no
longer be able to count on its steady gains. At least one such
prediction, however, seems very difficult to avoid, because
with a higher transistor density comes a higher sensitivity to
radiation-induced faults. A single stray neutron, streaking

down from the upper atmosphere in the wake of a cosmic-ray
collision with an air molecule, could pass through a computer
chip and introduce a fault into not just one bit of information—
something called a single-event upset, or SEU—but perhaps
as many as 16 bits within a closely packed area of memory.
When 16 zeros and ones change all at once, it’s more likely that
a calculation will be noticeably affected.

28 1663 October 20171663 October 201728

SOME RESOURCE-INTENSIVE
OPERATIONS DO NOT REQUIRE PERFECT

DETERMINISTIC COMPUTATIONS

Such multiple faults also make it more difficult to
successfully implement a remedy known as an error-correcting
code (ECC). Typically, that code works by appending additional,
redundant bits to a number, so that a value of zero, say, might
become a zero followed by two additional zeros. If, somewhere
down the line, the value is no longer 0 00, but perhaps 0 10
or 1 00, then the ECC knows something is wrong. It can fix the
problem by making the most likely assumption, that of a single
bit flip—in this case, the 1 should be a 0.

But if 16 bits change at once, this becomes much more
difficult to do. If every bit of information requires two
redundant bits just to safeguard against the simplest kind of
fault, an SEU, then computational resources would be much
more seriously taxed by having to provide enough redundancy
to fix severe multiple-event upsets. Short of building in an
enormous amount of redundancy and taking an enormous hit
in terms of power and performance, there would be no way
of knowing what had been corrupted. Some of the corrupted
bits might even reside in the error-correcting operation itself.

Heather Quinn and her colleagues in the Los Alamos
Space Data Science and Systems group have spent years
working to understand and combat radiation effects on
computer chips. Until recently, it has been very specialized
work because standard ECCs could do a satisfactory job for
computers on the ground; but on aircraft and spacecraft—
that is, closer to the cosmic rays—and in other high-radiation
environments, computer systems would be particularly
vulnerable to serious, uncorrectable errors. Indeed, the Cibola
Flight Experience satellite, which has been studying Earth’s
ionosphere for more than ten years,
successfully uses specialized Los Alamos
hardware and software to recover from
SEUs that occur on a daily basis.

“We’ve made a lot of progress
locking down the SEU issue,” says Quinn.
“But Moore’s Law is taking us to a place where SEU correction
will not be enough. Packing in more transistors will increase
a chip’s vulnerability alongside its performance.” She points
out that while the danger is more pronounced in space-based
systems, it will soon be a major problem on the ground for
consumer electronics—ten years by most projections and even
sooner for HPC. “But if we can come up with a solution for
space,” she says, “where radiation is abundant and electrical
power is at a premium, then we should be able to use that for
HPC and other computing environments on the ground.”

Trying Trikaya
Specialized computing systems have some form of fault

protection now. HPC systems have a similar safeguard to what
most people probably use in their own personal computing:
they save often. That is, at various checkpoints, they record
a last-known state to be restored in the event of a serious fault
event. Along with servers and high-end desktop computers,
HPC systems also have a form of ECC protection known as
a SECDED code (“single event correct, double event detect”).
The redundant bits are checked as values are moved in and out
of memory—at a significant cost to power, memory, and chip

space. (Laptops, tablets, and phones generally forego these
protections in favor of speed and battery life.) But as Moore’s
Law approaches its limit and faults begin to arrive en masse,
SECDED codes (as well as more cumbersome double-event-
correcting codes) will become less effective. That’s why Quinn
and collaborators have been working on a broader approach.

When a computer program is written, or coded, it is
written in a programming language that expresses logical
instructions: arithmetic operations, calls to subroutines,
if-thens, do-whiles, and the like. The program is then
“compiled” by another program (called a compiler) to convert
the human-comprehensible code into machine instructions.
Quinn’s approach is essentially to force the compiler to build
programs such that they operate in triplicate, using a technique
that she validated for a sweeping new ECC called Trikaya.
(The name refers to a Buddhist doctrine recognizing Buddha’s
three “kayas,” or bodies.)

A simpler version of this approach might cover a compu-
tation, such as adding two numbers. If this is done three times,
and the results are 4, 4, and 79, then an ECC could assume that
a fault occurred in the third calculation because it lost a “best
two out of three” contest. Essentially it was outvoted: two votes
for “4” and only one vote for “79” strongly suggests that a fault
disrupted the final calculation. (Alternatively, an identical
fault event could have affected the first two calculations in
exactly the same way, but this is an extremely unlikely scenario.)
Trikaya extends this three-vote concept to full, simple
programs, with more advanced capabilities planned. In effect,
everything the software does, it does three times, and then it

takes a vote to establish the results. Or, to save power and other
computational resources (e.g., access to hardware also needed
for other tasks), it might do everything twice and only conduct
a third vote if the first two disagree.

Theoretical work at Los Alamos over the past several
years has verified Trikaya’s algorithms, and operational testing
is currently underway at the Los Alamos Neutron Science
Center—the same proton accelerator and neutron source
that typically consumes a quarter of Los Alamos County’s
electrical power. It can spray neutrons on a chip and cause
faults at a much higher rate than would happen naturally,
even in space. That way, researchers can test how reliably
Trikaya actually fixes errors caused by radiation. If successful,
Trikaya protection will likely appear on the next generation
of satellites tasked with detecting nuclear detonations from
space. And if it proves successful there, it may influence
future microprocessor designs and ultimately filter down to
the personal-computer market.

Still, Trikaya, like earlier fault-protection strategies,
is resource intensive. It depends on repeating computations
and therefore saps power and performance. It may protect
satellites, and maybe personal computers, but by itself,

1663 October 2017 29

SOMETIMES GUESS-AND-CHECK
IS FASTER THAN DOING THINGS

THE USUAL WAY

it doesn’t solve the HPC resource problem. For that, Quinn
collaborates with Los Alamos colleague and HPC expert
Laura Monroe.

Inexact computing
“Not every problem requires an exact answer,” says

Monroe. “Sometimes it’s good enough—or even better—
to use inexact computing methods to get a high-probability,
close-enough answer faster and with less power than an
exact answer.”

Wait, what? Isn’t the whole point of computers that they
are reliable and calculate correct answers lightning fast?

Well, yes, that was the point. But as the Moore’s Law
crisis approaches, and with HPC systems
already resource-strained, the situation
has changed. In addition, certain resource-
intensive operations, such as image
processing, social networking, searching,
and sorting, genuinely do not require
perfect, deterministic computations. And other emerging
areas of advanced computing that require fast-but-not-perfect
calculations, such as machine learning and perception, are
likely to operate as well or better with inexact algorithms.
Even some traditional computations, including, ironically,
error correction, appear to be amenable to inexact methods.
It is now an important research challenge to understand which
problems might benefit from the speed and cost savings of
an inexact approach.

“Research into inexact computing started in the early
days of computing as an approach to unreliable systems,”
says Monroe. “But that need abated with the move away from
vacuum tubes to more reliable transistors and integrated
circuits in the 1950s. Now it’s becoming important again.”

Inexact computing consists of two similar-sounding but
distinct approaches: probabilistic computing and approximate
computing. Probabilistic computing, like a large number
of coin flips to converge on 50-50 odds, is non-deterministic,
meaning that the computational paths are different each time
a computation is performed, and the results may well be
different too. Approximate computing is deterministic and
straightforward, but it is abbreviated, such as by reducing
the numerical precision (e.g., number of decimal places)
or shaving off iterations in a looping calculation.

Another way to characterize these approaches involves
the difference between accuracy and precision. Accuracy is the
correctness of a calculation (or measurement), or how close it
is to the actual answer. Precision is how close each calculation
(or measurement) is to other calculations of the same problem.
So, accuracy or precision—for inexact computing purposes,
it is possible to relax either one.

For non-resource-limited computers today, both accuracy
and precision are widely understood to be at acceptable levels,
with both limited only by the finite number of bits used in a
digital-computer calculation. Most calculations are brute-force
applications of cumbersome but straightforward arithmetic
carried out with many more decimal places than are needed.
And because of the deterministic nature of the hardware and
software used, if a calculation is repeated, exactly the same
answer will emerge.

As a conceptual example, consider the irrational number
pi, which requires an infinite number of decimal places to
express it exactly. To calculate it, a computer could carry out a
formula to add up an infinite but converging series of decreasing
terms. (See “Two Slices of Pi” on the next page.) After adding
up a huge number of terms, pi is guaranteed to be correct up
to some number of decimal places. One could then choose to
trade accuracy for reduced resource consumption (power, time,
hardware requirements) by choosing to sum only the first few
terms. The precision would be perfect (to however many terms
one chooses to add), in the sense that repeated calculations

would always yield precisely the same answer, but the answer
would be off from the true value of pi, so the accuracy would
be relaxed. This is an example of approximate computing.

Alternatively, one could choose an accurate method with
precision relaxed—namely, the exact geometric definition of pi,
the ratio of a circle’s circumference to its diameter—but use an
imprecise, probabilistic computation to get there. The computer
could generate random numbers to represent pixels and
basically draw a circle from which to obtain pi; the more pixels,
the more closely the estimate will approach pi. One could design
this process with enough pixels that the result is x percent likely
to be within y percent of the correct value. The answer would
be different each time the calculation is performed, but a large
number of trials would converge toward the exact answer.

Unlike in conversational use, accuracy and precision mean different things in technical
use. Accuracy refers to the ability to produce a correct or optimal result. Precision
refers to limiting the amount of variation in a result. (Precision can also refer to the
number of significant digits or decimal places in a calculated or measured value, since
a measurement of 3.28 could mean 3.277 or 3.28412, and these represent variation
in the result.) In inexact computing, fault vulnerability and power consumption may
be reduced by deliberately restricting either the accuracy of a computation (by using
an approximation) or its precision (by restricting the number of significant digits
or using probabilistic methods).

Neither accurate nor precise

Accurate but not precise Accurate and precise

Precise but not accurate

30 1663 October 2017

SOMETIMES GUESS-AND-CHECK
IS FASTER THAN DOING THINGS

THE USUAL WAY

This is an example of probabilistic computing (not one used in
practice to calculate pi). For some tasks, including many HPC
simulations, such probabilistic and approximate algorithms may
be sufficiently accurate and precise, and yet considerably less
resource-intensive than a standard deterministic computation.

Turn up the radio
Some probabilistic computing requires specialized

hardware. Prototypes from academia, industry, and
government already exist, delivering impressive improvements

in speed and power use. Image processing, in particular,
has proven to be fertile ground for the potential benefits of
probabilistic computing.

Why image processing? “There are really two reasons,”
explains Monroe. “Most obviously, images don’t always
need to be perfect; sometimes minor variations will make
no difference in how the image is used, even in scientific
contexts. In addition, existing image-processing algorithms
can be very resource-intensive, so there’s a lot of opportunity
for savings.”

Two Slices
of Pi

Which is the better way to compute the value of pi—an irrational
number that can only be expressed exactly with an in�nite number
of decimal places—a deterministic or probabilistic calculation?

Each version below will be based on a ¼ slice of pi, or π/4.

DETERMINISTIC APPROACH
Because there’s no direct way to calculate pi as it is de�ned—the
circumference of a circle divided by its diameter—computers must
calculate pi by some other method. As an instructive example,
consider that the tangent of π/4 radians (equivalent to 45°) is 1:
tan(π/4) = 1.

By taking the arctangent (inverse of the tangent) and multiplying
by 4 on both sides of that equation, one gets: π = 4 × arctan(1).

The arctangent (and many other functions) can be expressed as
a power series—an exact formula based on the sum of an in�nite
number of terms. For the arctangent, this is:

PROBABILISTIC APPROACH
Alternatively, one could develop an exact geometric method and use
random numbers to make the irrational-number computation tractable.
For example:

The area of a circle is πr 2.

The area of a square just barely containing that circle is the length
of its side, squared; here the side length is just the circle’s diameter,
or twice its radius, 2r. Therefore the ratio of the area of the circle
to that of the square is:

Area ratio (circle’s area/square’s area) = πr 2 / (2r)2 = πr 2 / 4r 2 = π/4.
Equivalently, π = 4 × (circle’s area/square’s area).

After just one term, we have π = 4. After two terms, it’s π = 4 × (1 – 1/3) =
2.666666667. After 3 terms, it’s π = 4 × (1 – 1/3 + 1/5) = 3.466666667,
and so on. Because the terms get smaller and alternate signs (plus,
minus, plus, minus), each additional term helps to zero in on the
correct value (3.14159…). A computer program could meet reduced
power and computational resource requirements by adding only
the �rst few terms (the �rst ten? hundred? thousand?) and ignoring
the in�nite number of terms that follow.

The result would have good precision, in the sense that repeated
calculations adding the same number of terms give the exact same
result, but it might not be accurate enough—that is, not close
enough to the correct value of pi for a given task. In fact, the
arctangent power series nicely illustrates this limitation because
it converges very slowly; an enormous number of terms would have
to be added to arrive at a reasonably accurate approximation of pi.
Fortunately, other power series, with terms that also alternate signs
but diminish much more rapidly, can be used for calculating pi.

A computer capable of generating random numbers could place dots
at random pixel locations within the square. After some number of
pixels is placed, it could divide the number inside the circle by the total
number inside the square (including those inside the circle). Pi should
then equal four times that amount. Just as �ipping a coin many times
causes a 50–50 probability to emerge, more dots should lead to a more
accurate result.

That result would have limited precision because repeated calculations,
with di�erent random numbers each time, would yield di�erent results.
But with enough dots, such variations would be small, and there would
be a high degree of probability of a highly accurate result (close to
3.14159…). In some applications, calculating with random numbers like
this can be better (less power, more speed, better fault tolerance, etc.)
than an equivalent deterministic calculation.

so the formula for π, with x set to 1, becomes

x1
1 3 5 7

x3 x5 x7
arctan(x) …

3 5 7
1

π ()4 × 1 …
1 1

1663 October 2017 31311663 October 2017

For example, when doing image processing for radio
astronomy, one wants to keep the extraterrestrial radio sources
and remove the radio noise. This is typically done with an
iterative algorithm called CLEAN. You start by identifying the
x brightest pixels. Then you apply a mathematical operation
called a Fast Fourier Transform (FFT) to develop a “point
spread function” for those pixels. That’s just what it sounds
like: a way to take a perfect point source (of radio waves in
this case, such as a quasar) and calculate how that point will
spread into neighboring pixels in the instrument recording the
image. Then the resulting blurred bright spots are subtracted
from the original image and the whole process is repeated
many times. When done, all that remains in the image should
be noise. Then, finally, the saved bright spots are combined
with a noise-subtracted background that hopefully, but not
for certain, displays a good image of real astronomical radio
sources. Whew.

Radio telescopes are usually located in remote locations
far from sources of interference, where power is at a premium.
Good computational performance is therefore essential, and
a graphics processing unit (GPU) is a reasonable choice because
it is designed for parallel processing—subdividing compu-
tations into pieces that can be carried out simultaneously—
provided that parallel algorithms exist to take advantage of
this capability. At the time Monroe started to look into inexact
methods for image processing, there was a good parallel
algorithm for FFT on a GPU, but selecting the x brightest pixels
was a bottleneck.

Monroe and collaborators (including Joanne Wendelberger,
whose work is also featured on page 5, and Sarah Michalak)
developed an alternative, probabilistic approach for the
pixel-selection problem on a GPU. They used a randomized
process to select “pivots”: values for pixel brightness with
a user-chosen probability of bounding the x brightest pixels
and were used to sort pixels into bins. By repeating this

randomized sorting procedure to do the bright-pixel selection,
they were able to improve the corresponding processing times
by a factor of 1.5–6 and remove the bottleneck for the CLEAN
algorithm. This also increased capacity to handle images four
times larger than previous methods.

“It’s basically a Las Vegas algorithm—even though it is
probabilistic, it always gives the correct answer,” says Monroe.
“Sometimes, for the right problems, guess-and-check can be
faster in practice than doing things deterministically.”

So far, all these advances—probabilistic chips,
probabilistic algorithms, and advanced error correction like
Trikaya—are being created for special-purpose computations,
not for the general computing market. General consumer
computing will likely follow as new chips become increasingly
susceptible to radiation-induced faults. But one inexact-
computing improvement may be relatively easy to come by
right now.

Many programmers today carry out deterministic
math with higher decimal-place precision than necessary.
“Floating point” decimal numbers used in software coding
carry either single precision, which is encoded in 32 bits, or
double precision, which is encoded in 64 bits. Yet so many bits
(and corresponding decimal places) may not always be needed.
For example, Monroe is working with Lab colleagues to develop
codes that can be improved in terms of the tradeoff between
quality and resource use simply by going from double to single
or even half precision in some parts of the code. For HPC,
that would mean saving precious power or doing more
without consuming any additional power. It would also mean
saving memory and storage space. And it would mean faster
performance, or at least offsetting the performance reduction
caused by the advanced ECCs that will soon be necessary.

It’s a little thing, limiting numerical precision, but every
little bit helps when you’re under constant assault by radiation
from space.

—Craig Tyler

Certain resource-intensive image-processing tasks, such as “cleaning” a radio-astronomy
image as seen here, can be sped up with an inexact-computing algorithm. In this case,
a probabilistic approach to a bottleneck in the calculation yields a noise-reduced image
more quickly and efficiently than a deterministic approach.
CREDIT: Bill Junor/LANL

More high-performance computing at Los Alamos
• Facilities and capabilities

http://www.lanl.gov/org/padste/adtsc/hpc/index.php
http://www.lanl.gov/projects/advanced-simulation-computing/index.php

• Quantum computing
http://www.lanl.gov/discover/publications/1663/2016-july/not-magic-quantum.php

• Exascale computing for materials science
http://www.lanl.gov/discover/publications/1663/issues-archive/june2012.pdf

• History of supercomputers at Los Alamos
http://www.lanl.gov/discover/publications/alumni/2015-01/science-100supercomputers.php

• Select supercomputer applications
Climate science: http://www.lanl.gov/discover/publications/1663/2016-december/ice-sheet-demise.php
Cancer genetics: http://www.lanl.gov/discover/publications/1663/2016-december/what-causes-cancer.php
Petascale cosmology: http://www.lanl.gov/discover/publications/1663/issues-archive/october2012.pdf
Ocean ecology: http://www.lanl.gov/discover/publications/1663/2013-july/the-bottom-of-the-
ocean-food-chain.php

32 1663 October 2017

